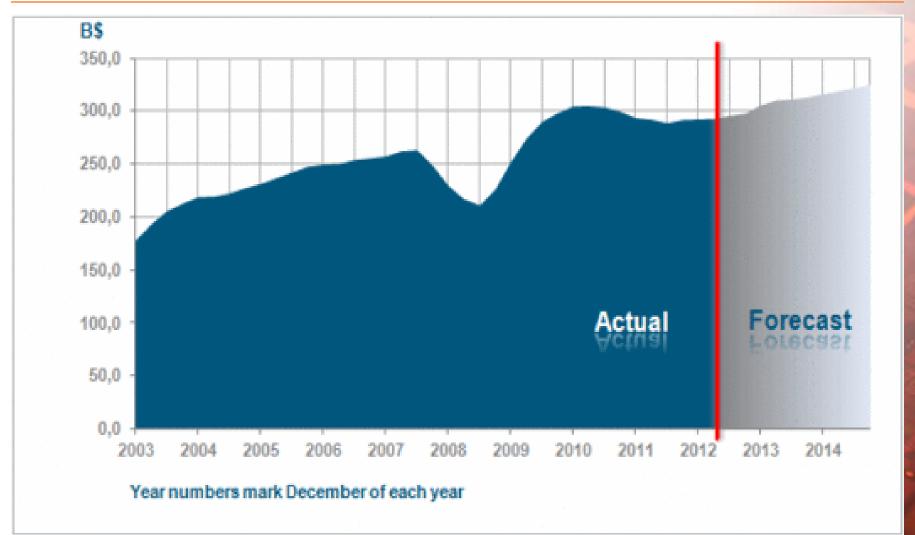
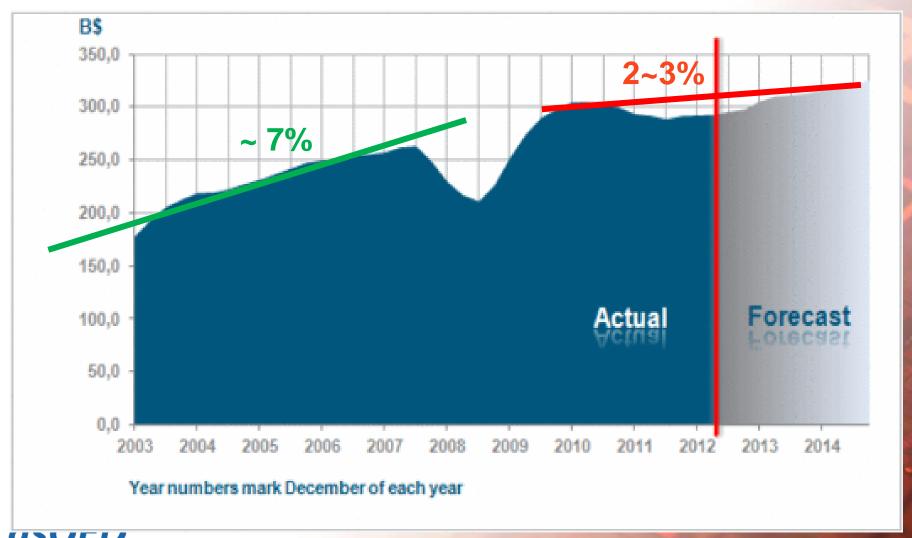

Importance of Analog in Digital World

Aabid Husain

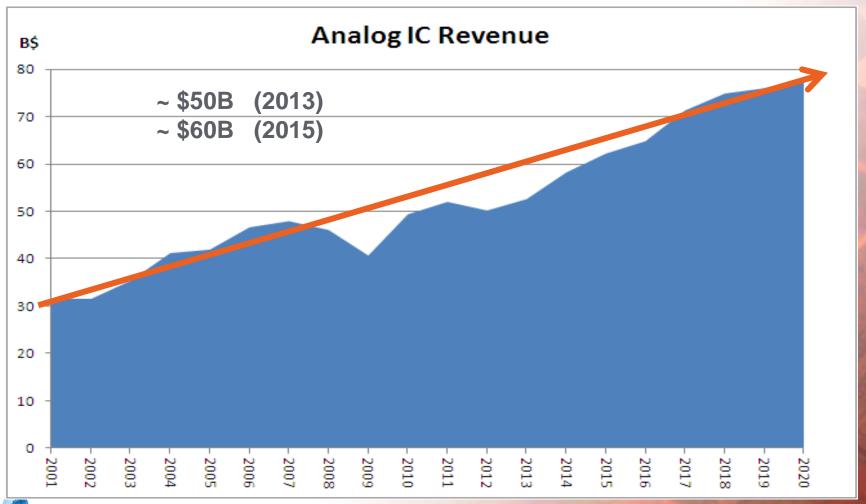
Vice President of Marketing and Business Development Analog, Power and Mixed Signal Technologies



- Growth of Analog IC's
- "Analog" in Digital World
- Analog or Multi-Technology SoC's
- Technology Platforms and Manufacturing
- Conclusion

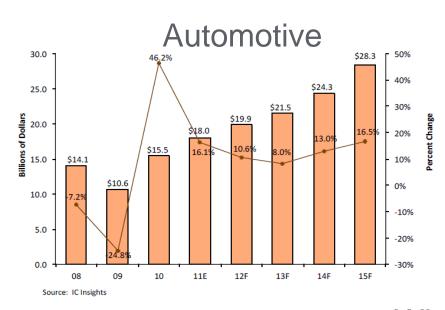


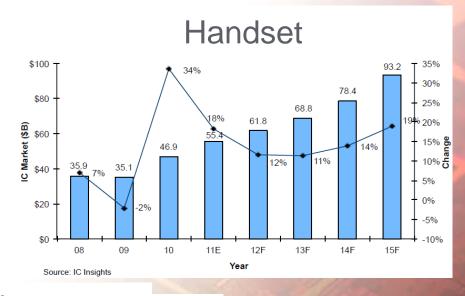
Semiconductor Industry

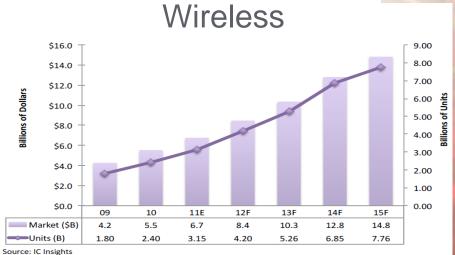


Semiconductor Industry - Maturing?

Analog Market - Growing at ~7% CAGR






Source: iSuppli, GLOBALFOUNDRIES Internal Research

Some Market Drivers for Analog IC's

Mega Trends that will Drive Our Economy, Technology and Semiconductors

The Cloud will cause upheaval in IT

Mobile computing will continue to converge functions and drive compute power

Internet of Things will drive mobile processing at low power with ubiquitous RF

Energy Efficiency is needed for sustainability & lower cost of ownership

Increasing Security concerns at all levels: government, enterprise and personal

Coverage and insatiable bandwidth needs will drive Next-Gen Wireless

	Semiconductor Content for Mega Trends (\$B)								
A	namegegrends Ma	Cloud Computing	Mobile Convergence	Internet of Things	Nex Gen Wireless	Security Standards	Energy Efficiency	TOTAL	
	Memory (Volatile)	-0.2	0.6	0.2	1.7	n/a	n/a	20.3	
	Memory (non-Volatile)	4	10.3	1.1	2.5	0	0.1		
	Microcomponenets	1.6	-0.2	6.4	2	1.2	1.9	26.6	
	Logic	0.8	3.9	3.5	5.4	0	0.1	20.0	
1	Analog	-0.8	1.8	1.8	2.2	n/a	0.1		
	Discretes	0.1	1.4	0.6	0.9	n/a	0.2	19.8	
	Optical	0.2	2.5	2.3	1.8	n/a	3	13.8	
	Sensors	-0.1	0.7	0.1	0.8	n/a	0.2		
	Total	5.6	21	16	17.3	1.2	5.6	66.7	

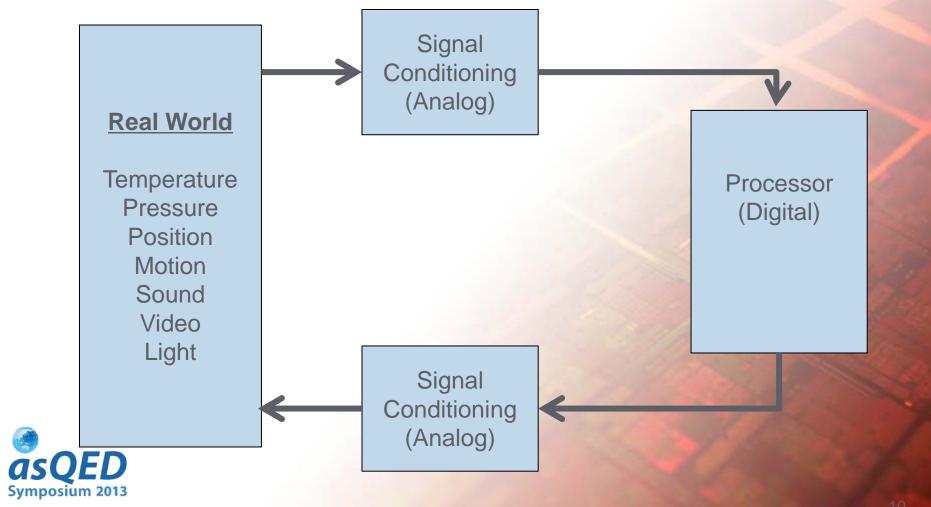
SOURCE: McKinsey on Semiconductors, Number 2, Autumn 2012, "Finding the Next 100 Billion \$'s in Semiconductor Revenues"

Base Market + Mega Trends \$60B + \$20M

Value of Analog IC in Digital Devices

- Without Analog IC
 - the Device will not turn-on
 - the Display will not work

Many other functions won't work!


(in case the first two problems were not big enough!!)

Where does Analog fit in this Digital World?

ThusAnalog is Everywhere !!

Teardown of a Common Digital Device Smartphone (iPhone 4S)

Analog

Power

Audio

Video

Display

Touch

Transmitters

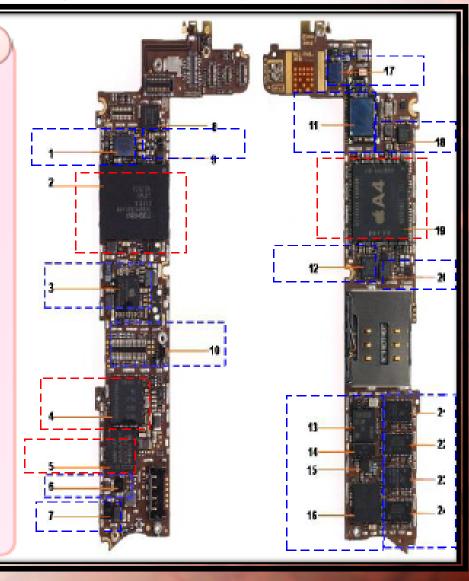
Compass

Gyroscopes

Accelerometer

9 Chips

Logic/Memory


Apps Processor + DRAM

NAND Flash

NOR Flash

Quad Baseband

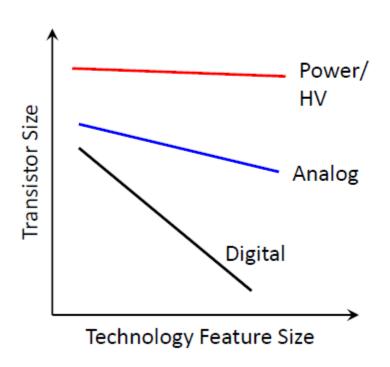
4 Chips

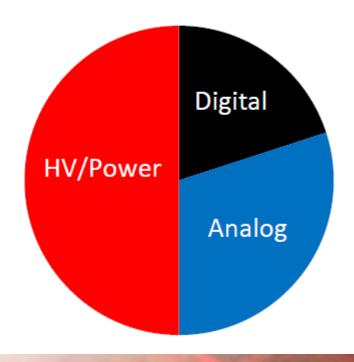
Difference between Digital and Analog

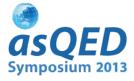
Digital

- Process Technology Follows ITRS Roadmap
- Major Process Differentiator is Timing & Ramp Execution
- Product Differentiation comes from Soft IP's and Software
- Technology Development is Mainly by Foundries

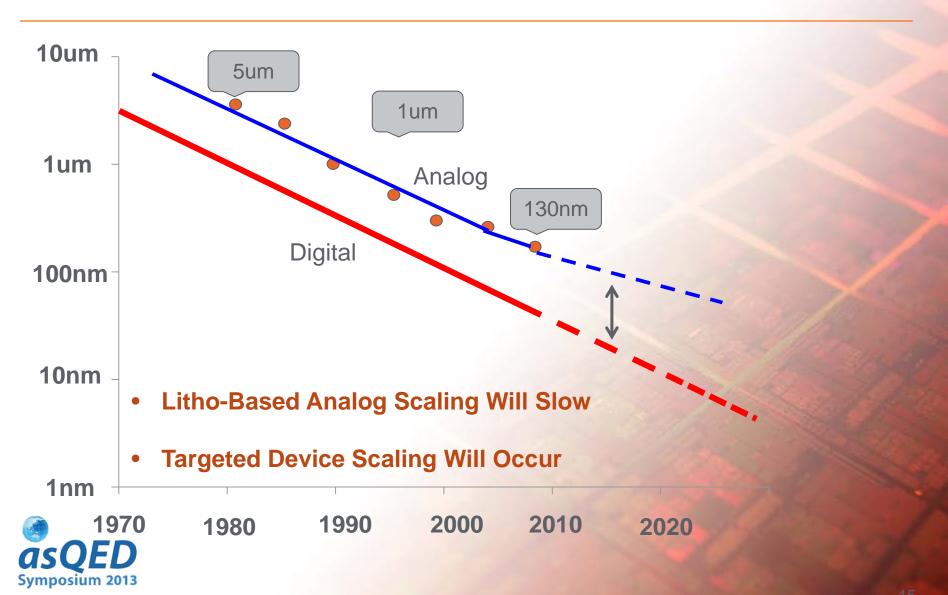
Analog


- No ITRS Roadmap for Process Technology
- Process Technology Remains a Critical IP
- Silicon IP is Main Differentiator
- Historically Dominated by IDMs, but Gap is Narrowing vs. Foundries

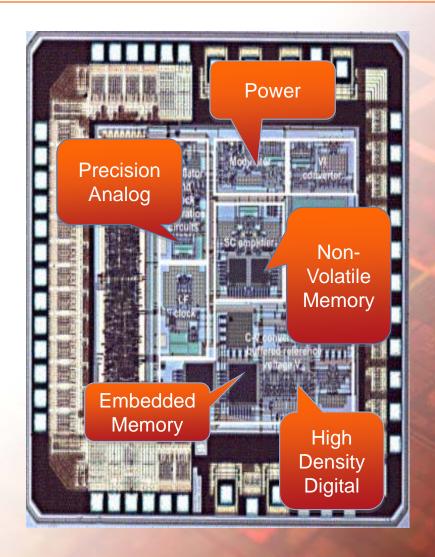



Scaling of Digital and Analog

Analog & Power Scale Slower


Not Much Digital on a Typical
Analog ICs

And ... Analog Scaling will be Even Slower

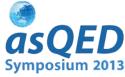


Hence... Mixed-Technology SoC's

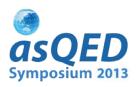
Applications
Audio
Display
Power Management
Others.....

Technologies

180nm – mainstream 130nm – leading edge 55nm – bleeding edge



PMIC for Samsung GALAXY – S3 Smartphone



Mixed Technologies for Analog SoC's

- Innovation and Differentiation is "In-Silicon"
- "Analog-Mind-Set" for Manufacturing

Strategy must be Centered on Modular Technology Platforms

Customizable

Options for customer specific devices

RF MEMS Module Baseline Process High Voltage Module

Portable IP

- One Set IP's for Platform
- IP's can be developed by customer

Replace devices (e.g. 5V with 3.3V OR 1.8V with 2.5V)

Add or Subtract mask-layers

Modular

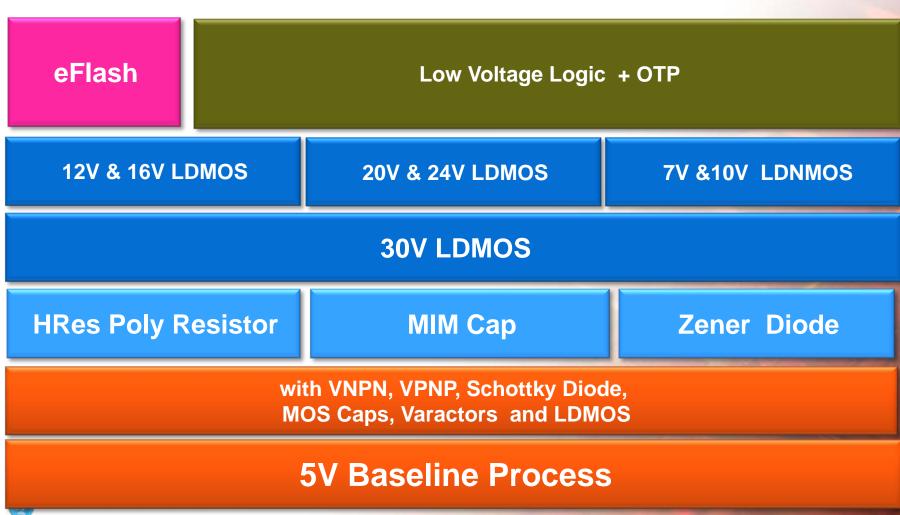
Add different type of isolation (e.g., DTI)

/ devices

Benefits

Flexibility

- Innovate in Silicon
- Create value for both Customer\ Foundries


Scalability

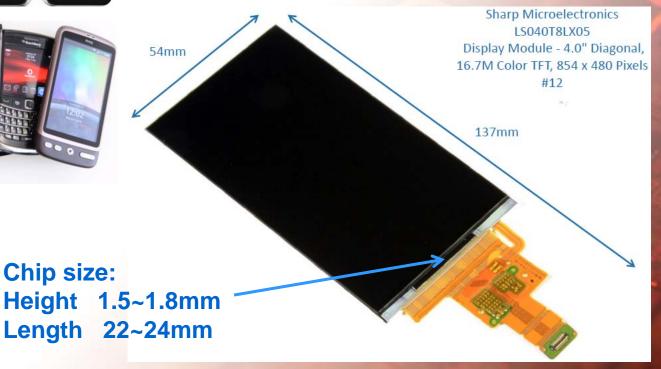
- Multiple technologies
- Modular and extendable
 - Multiple markets/ applications

Modular Technology Platform for Analog SoC's

Benefit of Modular Platform – An Example

Availability of 5V and 6V CMOS

Doromotoro	5V C	MOS	6V CMOS		
Parameters	NMOS	PMOS	NMOS	PMOS	
VT [V]	0.72	0.77	0.76	0.79	
Idsat [µA/µm]	540	280	600	315	
BVdss (min) [V]	7.5	7.5	8.5	8.5	
loff (typ) [pA/µm]	0.8	0.8	0.5	0.5	
Rdson [mohm-mm ^{^2}]	2.02	6.03	2.75	7.5	


High Resolution Smartphone Display Drivers

Chip size:

Requirements for HD Display Drivers

- Voltages
 - TFT: 1.2V; 6V and 32V
 - AMOLED: 1.2V; 8V and 20V
- OTP
- Configurable Parameter for Picture Quality w/ High Reliability
- SRAM
 - Smallest SRAM cell Implemented for High Density Memory
- Embedded -Flash
- Allows Integration of Display Driver and Touch Panel Controller

HD Display Driver Technology Platform

32 V HV device 20V HV device **OTP 8V Analog CMOS 6V Analog CMOS** Standard Cells I/O with ESD Cell **SRAM** with smallest bit cell Poly Res 1K & 2K **VNPN & LPNP** MOM & MiM 1.2V CMOS Baseline Process

Design Infrastructure to Support Analog SoC's

EDA/IP Solutions		0.18µm BCDlite™	0.13µm BCDlite™	
Standard Cells		1.8V: ARM-SAGE-9T 1.8V: RM-Metro-7T	1.5V: ARM-SAGE-9T	
Standard Cells		(5V&6V): ARM -9T		
	SP SRAM	Synopsys	ARM	
Memory Compiler	DP SRAM	Synopsys	ARM	
Complici	ROM	Synopsys	ARM	
I/O		1.8V ARM		
5V I/O		GLOBALFOUNDRIES	GLOBALFOUNDRIES	
OTP		eMemory	eMemory	
eFuse		GLOBALFOUNDRIES	GLOBALFOUNDRIES	
eFlash			SST	
Spice Model*		BSIM4.5	BSIM4.5/HiSIM (for HV)	
PDKs		Cadence	Cadence	
DRC/LVS		Mentor	Mentor	
RCX		Mentor / Synopsys / QRC	Mentor / Synopsys	
ESD Library		GLOBALFOUNDRIES	GLOBALFOUNDRIES	

Analog Companies with Internal Manufacturing

Analog Devices

Atmel

Bosch

Diodes -

Fairchild Semiconductor

Freescale

Fujitsu

IBM Corporation

Infineon

Intersil

Linear

Maxim

Micrel

Microchip Technology

Mitsumi Electric

NXP

ON Semiconductor

Panasonic Semiconductor

Renesas Electronics

Rohm

Samsung

Sanken Electric

Seiko Epson

Sharp

ST Microelectronics

Texas Instruments

Toshiba

Atmel

Bosch

Freescale

Fujitsu

IBM Corporation Burlington

Infineon

Maxim

NXP

ON Semiconductor

Panasonic Semiconductor

Renesas Electronics

Corporation

Samsung

Seiko Epson

ST Microelectronics

Texas Instruments

Toshiba

Fujitsu Infineon

Samsung

ST Microelectronics Texas Instruments

Toshiba

> 0.35um

180nm

130nm

Foundries Serving Analog IC Manufacturing

Altis

AMS

ASMC

GLOBALFOUNDRIES

Grace

MagnaChip

Micrel

OKI

PowerChip Technology

Silterra

Sekio Epson

SMIC

TowerJazz

TSMC

UMC

Vanguard

Yamaha

X-Fab

Altis

GLOBALFOUNDRIES

Grace

Lfoundry

MagnaChip

PowerChip Technology

Silterra

SMIC

Sekio Epson

TowerJazz

TSMC

UMC

Vanguard

X-Fab

GLOBALFOUNDRIES

PowerChip Technolog

PowerChip Technology

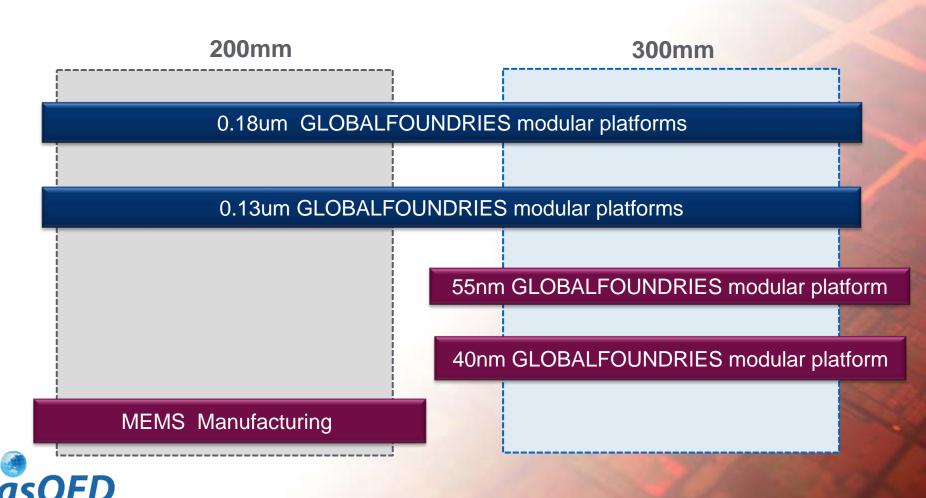
SMIC

TSMC

UMC

> 0.35um

180nm


130nm

Symposium 2013

Manufacturing Scalability for Analog Products

GLOBALFOUNDRIES Manufacturing in Singapore

The Analog Mindset

Silicon Accuracy

- Rich Component Set
- Tight Parametric Distributions
- Exhaustive Device Characterization
- 2nd Order Effects Noise, Matching,

Simulation Accuracy

- Thorough PDK That Works
- SPICE Models That Match Silicon
- Robust ESD Solutions
- Proven IP Blocks for Key Functions

Manufacturability

- Electrical Failure Analysis, ESD Reviews
- Zero Defects, DPPM Focus
- Flexibility Handle Unusual Requests
- **Eco-System**

- Analog IC is a Growth Market
- Analog is Everywhere!
- Analog SoC's are here....
- "Analog Mindset" for Manufacturing

THANK YOU

Visit us at www.globalfoundries.com

Trademark Attribution

GLOBALFOUNDRIES, the GLOBALFOUNDRIES logo and combinations thereof are trademarks of GLOBALFOUNDRIES Inc. in the United States and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2009 GLOBALFOUNDRIES Inc. All rights reserved.

